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Fundamentals of SAR Polarimetry 
 
Abstract A comprehensive overview of the basic principles of radar polarimetry is presented. The relevant 
fundamental field equations are first provided. The importance of the propagation and scattering behavior in 
various frequency bands, the electrodynamic foundations such as Maxwell’s equations, the Helmholtz vector 
wave equation and especially the fundamental laws of polarization will first be introduced: The fundamental 
terms which represent the polarization state will be introduced, defined and explained. Main points of view 
are the polarization Ellipse, the polarization ratio, the Stokes Parameter and the Stokes and Jones vector 
formalisms as well as its presentation on the Poincaré sphere and on relevant map projections. The Polarization 
Fork descriptor and the associated van Zyl polarimetric power density and Agrawal polarimetric phase 
correlation signatures will be introduced also in order to make understandable the polarization state 
formulations of electromagnetic waves in the frequency domain. The polarization state of electromagnetic 
waves under scattering conditions i.e. in the radar case will be described by matrix formalisms. Each 
scatterer is a polarization transformer; under normal conditions the transformation from the transmitted wave 
vector to the received wave vector is linear and this behavior, principally, will be described by a matrix 
called scattering matrix. This matrix contains all the information about the scattering process and the 
scatterer itself. The different relevant matrices, the respective terms like Jones Matrix, S-matrix, Müller M-
matrix, Kennaugh K-matrix, etc. and its interconnections will be defined and described  together with change 
of polarization bases transformation operators, where upon the optimal (Characteristic) polarization states are 
determined for the coherent and partially coherent cases, respectively. The lecture is concluded with a set of 
simple examples. 
 
4. Polarimetric Radar Optimization for the Coherent Case 
The optimization of the scattering matrices, derived for the mono-static case is separated into two distinct 
classes.  The first one, dealing with the optimization of [ , , and [ , for the coherent case results in 
the formulation of ‘Kennaugh’s target matrix characteristic operator and tensorial polarization fork’ and 
the associated renamed ‘Huynen Polarization Fork’ concept plus the ‘co/cross-polarization power density 
plots’ and the ‘co/cross-polarization phase correlation plots’, also known as the van Zyl [79, 71] and the 
Agrawal plots[78, 90], respectively, in the open literature.  The second one, presented in Chapter 5, deals 
with the optimization for the partially polarized case in terms of  the ‘lexicographic and the Pauli-based 
covariance matrices,   and [ , respectively’, as introduced in Sections 3.7 to 3.10, resulting in the 
‘Cloude target decomposition theorems’ and the Cloude-Pottier [27, 57, 58] supervised and 
unsupervised ‘Polarimetric Entropy , Anisotropy , and 
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H α -Angle Descriptors’.  In addition, the 
‘polarimetric contrast optimization procedure’ dealing with the separation of the desired polarimetric radar 
target versus the undesired radar clutter returns of which the alternate lexicographic and Pauli-based 
covariance matrix optimization procedures deserve special attention next to the coherent [  and partially 
coherent [  matrix cases. 
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4.1 Formulation of the Mono-Static Radar Optimization Procedure according to Kennaugh for 

the Coherent Case 
Kennaugh was the first to treat the mono-static polarimetric radar optimization procedure (see Fig. 4.1) for 
optimizing (3.9) according to the BSA formulation 
 
                                                       ( ) [ ] ( )   s S ∗= E riE r                                                          (4.1) 
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Fig. 4.1 BSA Optimization According to Kennaugh 

 
but with the received field being so aligned with the incident field ( ) rEr ( )r E i   with the reversal of the 
scattered versus incident coordinates of the BSA system resulting in Kennaugh’s psuedo-eigenvalue’ [4] 
problem of   
Opt{[S]} such that                                                                                          (4.2) [ ] 0  E- E   =  ∗ λS
 
The rigorous solution to this set of ‘con-similarity eigenvalue’ problems was unknown to the polarimetric 
radar community until the late 1980’s, when Lüneburg [54], rediscovering the mathematical tools [116, 117], 
derived a rigorous but mathematically rather involved method of the associated con-similarity eigenvalue 
problem, not further discussed here, but we refer to Lüneburg’s complete treatment of the subject matter in 
[52, 53].  Instead, here Chan’s [77] ‘Three-Step Solution’, as derived from Kennaugh’s original work [4], is 
adopted.  
 
Three Step Procedure according to Chan [77] 
By defining the polarimetric radar brightness (polarization efficiency, polarization match factor) formation 
according to (3.26) and (3.27) retaining the factor 1/ (not contained in the 1983 IEEE Standard and in 
Mott’s textbook) [76, 102] as 

2
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in terms of the terminal voltage V , being expressed in terms of the normalized transceiver antenna height 

 and the incident field  E , as defined in Mott [76] and in [19], by 
 R
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so that the total energy density of the scattered wave E  , may be defined by s

 

[ ]( ) [ ]( ) [ ] [ ]( ) [ ] ttttttss GSSSSW EE  E E  E E   EE  +++++
====         (4.5) 

 
where [ ] [ ] [ ]†  G S= S  defines the Graves power density matrix [7], first introduced by  
Kennaugh [4, 5]. 
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Step 1 
Because the solution to the ‘pseudo-eigenvalue problem’ of (4.2) was unknown at that time (1954 until 
1984); and, since [  could be, in general, non-symmetric and non-hermitian, Kennaugh embarked instead 
in determining the ‘optimal polarization states’ from optimizing the power density matrix so that 

]S

 
[ ] 0  E E optopt =− ttG ν             (4.6) 
 
for which real positive eigenvalues  

2
11     λν =   and  

2
22     λν =   exist for all matrices [  since [  is 

Hermitian positive semidefinite so that 
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where 
  

[ ] [ ] [ ] [ ] [ ] [ ] 4
2222

21 κνν =+++====+ VVVHHVHH SSSSSSpanGTrace        invariant                  (4.8) 
 
 

[ ] [ ]( ) [ ]( ) ( )( )∗∗ −−====⋅ VHHVVVHHVHHVVVHH SSSSSSSSSDetSDetGDet       invariant       21 νν    (4.9) 
 
For the mono-static, reciprocal symmetric [ , above equations reduce with    to  ]S VHHV SS =
 

[ ] [ ] [ ] [ ] [ ] 3
222

21 2 κνν =++====+ VVHVHH SSSSSpanGTrace       invariant                  (4.10) 
 
and 
 

[ ] [ ]( ) [ ]( ) ( )( )∗∗ −−====⋅ 22
21 HVVVHHHVVVHH SSSSSSSDetSDetGDet        invariant       νν        (4.11) 

 
In order to establish the connection between the coneigenvalues of equation (4.2) and the eigenvalues of  

 in (4.6), one may proceed to take the complex conjugate of (4.2) and insert back in (4.2). Equation (4.2) 
has orthogonal solutions if and only if [  is symmetric. The inverse step is much more difficult to prove 
and needs among others the symmetry of[ , which provides another topic for future research.  

[G]
]S

S]
 
As a result of these relations, Kennaugh defined the ‘effective polarimetric radar cross-section’ 

4Kε , also 

known as ‘Kennaugh’s Polarimetric Excess  
4Kε ‘, in [118], where  

 
[ ] [ ]

4
 2K Span S Det Sε = +              (4.12) 

which comes automatically into play (also in the present formulation) when representations on the Poincare 
sphere are considered, which reduces to 

3Kε for the mono-static reciprocal case. It plays an essential role in 
Czyz’s alternate formulation of the ‘theory of radar polarimetry’ [110], derived from a spinorial 
transformation concept on the ‘generalized polarization sphere’, being studied in more depth by Bebbington 
[32].  
 
Step 2 
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Using the resulting solutions for   2,1 ν  for the known [ ] [ ] [ ]SSG +=  

2,1

 and [ , the optimal transmit 

polarization states  and optimal scattered waves   can be determined as  

]S
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t
optE s

optE 
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2,12,1

ts S optopt E E =                           (4.13) 

 
Step 3 
The received optimal antenna height    is then derived from (4.4)  opt  hr

 

as 
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which defines the ‘polarization match’ for obtaining maximum power in terms of the polarimetric brightness 
function (4.4) introduced by Kennaugh in order to solve the polarimetric radar problem [4]. 
 

There exist several alternate methods of determining the optimal polarization states either by 
implementing the ‘generalized complex polarization ρ’ transformation, first pursued by Boerner et al. [13]; 
the ‘con-similarity transformation method’ of Lüneburg [52, 53] , the ‘spinorial polarization sphere 
transformations’  of Bebbington [32], and more recently the  ‘Abelian group  method’ of Yang [104 - 105]. It 
would be worthwhile to scrutinize the various approaches, which should be a topic for future research.  
 
4.2 The Generalized ρ - Transformation for the Determination of the Optimal Polarization States 

by Boerner  using the Critical Point Method 
Kennaugh further pioneered the ‘polarimetric radar optimization procedures’ by transforming the 
optimization results on to the polarization sphere, and by introducing the co-polarized versus cross-polarized 
channel decomposition approach [4] which were implemented but not further pursued by Huynen [9].  
Boerner et al. [31, 82], instead, proposed to implement the complex polarization ratio ρ  transformation in 
order to determine the pairs of maximum/minimum back-scattered powers in the co/cross-polarization 
channels and optimal polarization phase instabilities (cross-polar saddle extrema) by using the ‘critical point 
method’ pioneered in [82].  Assuming that the scattering matrix [ (   is transformed to any other ortho-
normal basis {A B} such that 

)]S HV
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'            (4.15) 

 
with  given by (2.23); and  , for the mono-static case, the polarimetric radar 
brightness equation becomes 

[ ]U VHHV SS   =    ''
BAAB SS =

 

[ ]
2 22 ' ' '1 1 1     h   h

2 2 2
T Tr t rP V S S = = =  E E t                    (4.16) 

 
where the prime ‘ refers to any new basis {A B} according to (4.15). 
 
By implementation of the Takagi theorem [116], the scattering matrix [ (  can be diagonalized [52] so 
that  

' )]S AB

 



Basics of SAR Polarimetry II 

RTO-EN-SET-081 2 - 5 

 

 

( )[ ] [ d
BB

AA S
S

S
ABS =








 

 
=








=

2

1

λ
λ
0

0
0

0
'

'
' ]                       (4.17) 

 

( ) ( ) ( )1' 2
1 1 1 1  1    exp(2 )   exp(2 )AA HH HV VVS S S S j jλ ρ ρ ρ ρ ρ ψ λ

−∗
1 1 1 1 = = +   + 2  +  =   φ 1        (4.18) 

 

( ) ( ) ( )1' 2
2 1 1 1 2   1     exp(2 )   exp(2 )BB HH HV VVS S S S j 2jλ ρ ρ ρ ρ ρ ψ λ
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1 1 4 =  = +  − 2 +  =   φ          

(4.19) 
as shown in [31]. 
 
Determination of the Kennaugh target matrix characteristic polarization states:  The expression for the power 
returned to the co-pol and cross-pol channels of the receiver are determined from the bilinear form to 
become: 
(i) Cross-pol  Channel Minima or Nulls (n), Maxima (m) and Saddle-Optima (s): 
For the Cross-pol channel power   r t

xP with ⊥=E E , expressed in terms of the antenna length h  
 

( ) ( )22 2' ' ' ' ' 2 '2 '
1 1 22' '

1 1       [ ]    
2 1

T
x xP V S 2 '

2λ ρ ρ λ λ ρ λ λ ρ λ ρ ρ
ρ ρ

∗ ∗ ∗ ∗ ∗
⊥ 1 2∗

= = =    −    −    +   
+   

h h  

              (4.20) 
 
so that for the cross-pol nulls (  ), for the cross-pol maxima ( ), and for the cross-pol saddle 

optima (  ), according to the critical point method introduced in [82], 

'
2,1xn ρ '
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'
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'
1 −=  −=  −=  ∗∗∗             xsxsxmxmxnxn ρρρρρρ                                (4.22) 

 
which states that there exist three pairs of orthogonal polarization states, the cross-pol minima (  ), the 

cross-pol maxima ( ), and the cross-pol saddle optima (  ), which are located pair-wise at 
antipodal points on the polarization sphere so that the lines joining the orthogonal polarization states are at 
right angles to each other on the polarization sphere[82]. 

'
2,1xn ρ

'
2,1xm ρ '

2,1xs ρ

(ii)Co-pol Channel Maxima  ( '
2,1cm ρ ) and Minima or Nulls ( '

2,1cn ρ ): 

For the function of the power   r
cP with t=E E , return to the co-pol channel (c) 

( )
( )22 2' ' ' 2 '2 '2 ' 2

1 1 2 22' '

1 1 1       [S ]    
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              (4.23) 
the critical points are determined from 
 

                1,0 '
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1 −=  ∞= = = = cmcmxncmxncm where ρρρρρρ                                                    (4.24) 

 
and the co-pol maxima are identical to the cross-pol nulls as was first established by Kennaugh  



Basics of SAR Polarimetry II  

2 - 6 RTO-EN-SET-081 

 

 

[4, 5], and utilized by Huynen [9]. In addition the critical points for the co-pol-null minima or nulls ( '
2,1cn ρ ) 

are determined from (4.23) to be  
 

            ))22(exp(
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±= 
2
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λ
λ

λ
λρ jcn                                                                (4.25) 

 
and it can be shown from above derivations that the co-pol-null minima and  '

1cn ρ '
2cn ρ

lie in a plane spanned by the co-pol-maxima (cross-pol-minima) and the cross-pol-maxima and the angle 
between the origin of the polarization sphere and the two co-pol-nulls is bisected by the line joining the 
orthogonal pair of co-pol-maxima (cross-pol-minima) defining the target matrix critical angle 2x2γ as shown 
first by Kennaugh [4] leading to his tensorial polarization fork formulation. 
 
(iii)Orthogonality Conditions with Corresponding Power Returns: 
The three pairs of  cross-pol-extrema, the cross-pol nulls (  ) being  identical to co-pol maxima  

(  ), the cross-pol maxima  ( ) and cross-pol saddle optima (  ),    satisfy the orthogonality 
conditions of (4.22) and (4.24) which implies that they are located each at anti-podal locations on the 
polarization sphere. We note that the co-pol maxima’ consist of one absolute maximum and an orthogonal 
local maximum. The corresponding co/cross-polar power returns become 

'
2,1xn ρ

'
2,1cm ρ '

2,1xm ρ '
2,1xs ρ

 
{ } ( ) ( ) 0'

22
'

11 = = = xnxnxnxnx PPPMin ρρ    ; 
 

{ } ( ) ( )              2
2

'
22

2'
11:  =  = 1 λρλρ cmcmcmcmc PPPMax ; 

 

{ } ( ) )          2
2

2'
2,1 (

4
1:  λ+ λ= ρ 1xmxx PPMax ; 

 
{ } ( ) 0: '

2,1 = ρ cncc PPMin     ; 
                                                                                                     (4.26) 

{ } ( ) )   -       2
2

2'
2,1 (

4
1:  λ λ= ρ 1xsxx PPSad  

 
The resulting co/cross-polar extrema are plotted on the polarization sphere shown in Fig. 4.2 
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Fig. 4.2 Co/cross-polar Extrema 

 
4.3 The Kennaugh Target Characteristic Scattering Matrix Operator, and the Polarization Fork 

according to Boerner 
Kennaugh was the first to recognize that the orthogonal pairs (X1, X2) of the cross-pol nulls ( ) or co-

pol maxima (

'
2,1xn ρ

2211 , xncmxncm ρρρρ ==   )  and the pair ( S1, S2 ) of cross-pol maxima (  ) lie in one main 
cross-sectional plane of the polarization sphere also containing the pair ( C

'
2,1xm ρ

1, C2) of non-orthogonal co-pol 
nulls ( 2,1cnρ  ), where the angle 4γ  between the two co-pol null vectors on the Poincaré sphere is bisected by 
the line joining the two co-pol maxima (cross-pol nulls).  These properties were first recognized explicitly 
and utilized by Kennaugh for defining his “Spinorial Polarization Fork”, used later on by Huynen to deduce 
his ‘Polarization Fork’ concept. 

However, Boerner et al. [13, 25, 81, 31, 82], by implementing the complex polarization ratio 
transformation, were able to relate the polarization state coordinates  on the Polarization sphere 
directly to the corresponding   on the complex polarization ratio plane. Then according to [82], each 
point of the complex plane can be connected to the ‘zenith (LC)’ of the polarization sphere, resting 
tangent to the complex plane in its ‘origin 0’ of the ‘nadir (RC)’, by a straight line that intersects the sphere 
at one arbitrary point , where the ‘nadir (RC)’ corresponds to the ‘origin 0’ of the -plane, the ‘zenith (z)’ 
to the -circle at ‘infinity ( ∞ ’  and the equator representing linear polarization states.  Any two orthogonal 
polarization states are antipodal on the sphere, like ‘zenith (left-circular)’, and ‘nadir (right-circular)’.  
Utilizing this property, Boerner and Xi [31] were able to associate uniquely three pairs of orthogonal 
polarization states at right angle (bi-orthogonal) on the polarization sphere; i.e. the anti-podal points S

)( ' ρP
 'ρ

 'ρ

 'ρ

2,1

 'ρ

1, S2 
(  ) and T'

xm ρ 1, T2 (  ), with '
2,1xs ρ 21SS  and  21TT  being perpendicular to one another (bi-orthogonal); and 

similarly to the line  21XX   joining X1 (nadir: ) and  X0'
1

'
1 = = cmxn ρρ 2 (zenith: ); where ∞= = '

22 cmρ '
xnρ
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the co-pol nulls (  ) lie on the same main circle on the complex plane of  and   so that 

their corresponding points C

'
2,1cn ρ '

2,1cn ρ '
2,1xn ρ

1 and C2  are symmetric about the diameter 21XX  which bisects the angle 
between C1, 0, C2 known as the Kennaugh target matrix characteristic angle  ( 2x2 γ ). The ‘great cross-

sectional plane’ containing    2121 XXSS ⊥ and C1, C2 is denoted as the ‘Kennaugh target matrix 
characteristic plane’ with corresponding great circle being the ‘Kennaugh target matrix characteristic 
circle’.  Fig. 4.3 define the representations of the Poincaré sphere for the general and standardized 
polarization fork (Huynen), respectively, including the proper definitions of ‘Huynen’s Geometrical 
Parameters  (φ-target orientation angle; γ-target ship angle; τ-target ellipticity angle, ta )n exp( jρ α δ= ’, 
next to ‘Kennaugh’s target matrix characteristic angle γ ’.  

ψ

= exp(|| E

αexp( j

χ
sin

]
] [ ]1jL σ= −

exp( jα

cosφ= ])

−= ⊥a

 
This concludes the description of the ‘Kennaugh polarimetric target matrix characteristic operator’; which 
was coined ‘the polarization fork’ by Huynen [9]. 
 
4.4 Huynen’s Target Characteristic Operator and the Huynen Polarization Fork 
Huynen [9], utilizing Kennaugh’s prior studies [4, 5], elaborated on polarimetric radar phenomenologies 
extensively, and his “Dissertation of 1970: Phenomenological Theory of Radar Targets” [9], re-sparked 
international research on Radar Polarimetry, commencing with the studies by Poelman [10, 11], Russian 
studies by Kanareykin [122], Potekhin [123], and others [1].  
 
Huynen cleverly reformulated the definition of the polarization vector, as stated in [9], so that group-
theoretic Pauli-spin matrix concepts may favorably be applied which also serve for demonstrating the 
orientation angle invariance which Huynen coined ‘de-psi-ing (de-ψ -ing)’  using  for denoting the 
relative polarization ellipse orientation angle.  Here, we prefer to divert from our notation by rewriting the 
parametric definition of the polarization vector    
 









−







 −
χψψ

ψψ
φχψφ

cos
cossin
sincos
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as  
 









−







 −
=

τ
τ

φφ
φφ

τφα
sin

cos
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sincos

)),,,(
j

aap                                                                  (4.27) 

 
which with the use of the Pauli-spin matrices [ iσ  defined in (2.14), the Huynen quaternion group 

definitions may be re-expressed  as [ ] [ ]0I σ= , [ ] [ ]3jJ σ= − , [ ] [ ]2K j σ= , [  
 









=

0
1

])[exp(])[exp()),,,( KJaa τφτφαp                                                                     (4.28) 

 
with  ][sin][])[exp( JIJ φφ +    and  ][sin][cos[exp( KIK τττ +=             
 
In this notation the orthogonal polarization vector p becomes  ⊥

 









+⊥⊥⊥⊥ 0

1
])[exp(]})[

2
exp{()exp(),,,( KJja τπφατφαp                                               (4.29) 
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so that   p  .  0,2 =⋅=⋅ ∗
⊥

∗ pp    p a
 
Utilizing this notation, the transformed matrix [ (  becomes ' )]S AB
 

])][([][)]('[ UHVSUABS T=                                                                                                    (4.30) 
 
with the orthonormal transformation matrix [  defined in (2.23), which may be recasted with       m]U mp=  
the so-called maximum or null polarization as defined in [31], into 
 

][][ ⊥= m mU                                                                                                                             (4.31) 
Because of the orthonormal properties of m and , which satisfy the con-similarity eigenvalue equation 

[82], the off-diagonal elements of [ (  vanish. This in turn can be used to solve for ρ in (2.23), and 
hence for m and m , without solving the consimilarity eigenvalue problem of (4.6).  The complex 
eigenvalues

⊥m
' )]S AB

⊥

2,1xnρ , defined in (4.26) are renamed as  and were defined by Huynen as 2,1s
 

)}(2exp{tan)}(2exp{ 2
21 βυγβυ −−=+= jmsjms                                                               (4.32) 

 
so that  [ ( of ( 4.30) becomes  ' )]S AB
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)}(2exp{tan0
0)}(2exp{

)],([)]('[ 2 ⊥
∗

⊥
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−−

+
= mm mm

βυγ
βυ

      (4.33) 

 
where βυτψγσ andm mK ,,,,,=  are the Huynen parameters, and m denoting the target matrix 
magnitude, may be identified to be “Kennaugh’s polarimetric excess Kσ ” defined in ( 4.12); and   

( )mτψ ,m    may be re-normalized as  
 

( ) [ ]( ) [ ]( ) 
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and finally with 
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and [ ]L  representing the third modified Pauli-spin matrix, satisfying in Huynen’s notation 

[ ] [ ][ ] [ ][ ] [ ] [ ]IL
j

j
JKKJL −=







−
−−== 2,

0
0

                (4.36) 

 
we obtain Huynen’s target matrix characteristic operator  
 

( )[ ] ( )[ ] ( )[ ] ( βυτψ







γ

υτψ=τυφβγ jUmUm T
mmmm exp,,

tan0
01

,,,,;,, *
2

*     H )            (4.37) 
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where 
 

( )[ ] [ ]( ) [ ]( ) [ ]( LKJ )υτψυτψ expexpexp,, mmU           (4.38) 
 
representing the Eulerian rotations with υτψ 2,2,2 m about the bi-orthogonal polarization axes     

21SS (connecting the two cross-pol maxima), 21XX (connecting the two cross-pol nulls, or equivalently, co-

pol maxima), and 21TT  (connecting the two saddle optima), respectively, with more detail given in Boerner 
and Xi [31].  Huynen pointed out the significance of the relative target matrix orientation angle ψφ −=Φ ,  
where  φ    denotes the antenna orientation angle, and that from definition of ( )mτψ ,m  in (4.34), it can be 
shown that it can be eliminated from the scattering matrix parameters and incorporated into the antenna 
polarization vectors (‘de-psi-ing: de-ψ -ing’) , and that the Huynen parameters are orientation independent, 
which was more recently analyzed in depth by Pottier [58].  The Eulerian angle are indicators of a scattering 
matrix’s characteristic structure with   υ   denoting the so-called ‘skip-angle’ related to multi-bounce 
scattering (single versus double),   mτ  denotes the helicity-angle and is an indicator of target symmetry 

0=mτ  or non-symmetry, and  β  is the absolute phase which is of particular relevance in polarimetric radar 
interferometry.  

 
Fig. 4.3 Huynen’s Polarization Fork (Xi-Boerner Solution) 

 
4.5 Alternate Coherent Scattering Matrix Decompositions by Kroggager and by Cameron 
Another class of scattering matrix decomposition theorems [124, 30] were recently introduced, and are also 
expressed in terms of the Pauli spin matrix sets [ ]( )3,2,1,0       , =iip σψ , by associating elementary scattering 

mechanisms with each of the [ ]iσ , so that for the general non-symmetric case 
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( )[ ] [ ] [ ] [ ] 3210,,, σσσσ dcba
bajdc
jdcba

dcbaS +++=







−+

−+
= [ ]      (4.39) 

 
where a, b, c and d are all complex. Above ‘coherent’ decomposition may be interpreted in terms of four 
‘elementary deterministic point target’ scattering mechanisms, viewed under a change of wave polarization 
basis, where 
 
a - corresponds to single scattering from a sphere or plane surface 
b - corresponds to di-plane scattering                                                                                      (4.40)   
c - corresponds to di-plane scattering with a relative orientation of  45° 
d - corresponds to anti-symmetric ‘helix-type’ scattering mechanisms that transform the incident       wave 
into its orthogonal circular polarization state (helix related) 
 
Krogager [30] and Cameron [124, 125], among others, in essence made use of this decomposition for the 
symmetric scattering matrix case by selecting the desirable combinations of  the [ ]iσ that suits their specific 
model cases best. 
 
In the ‘Krogager Approach’, a symmetric matrix [ ]KS  is decomposed into three coherent components, 
which display the ‘physical meaning’ of ‘sphere’, ‘diplane’, and ‘helical targets’, where 
 

( )[ ] [ ] ( )[ ] ( )[ ]heldisphK SjSjSdbaS         φηφµα expexp,, ++=         (4.41)            
 
with additional direct associations with the Pauli matrices defined in (2.14) given by 
 

[ ] [ ] [ ] 






 −
=








−

=







=

0
0

10
01

10
01

j
j

SSS heldisph                                                                            (4.42) 

 
This decomposition is applied directly to the complex [  matrix imagery, and results into a rather efficient 
sorting algorithm in terms of the three characteristic ‘feature sorting base scatter images’. Using color 
composite presentations for the three classes then allows for the associated ‘unsupervised feature sorting’. 
This feature sorting method has been applied rather successfully in the interpretation of various geo-
environmental (forestry, agriculture, fisheries, natural habitats, etc.) as well as in law enforcement and 
military applications.  

]S

 
In the ‘Cameron Approach’,  the matrix ( )[ ]dcbaSC ,,,  is decomposed, by separating the non-
reciprocal [ ]

nrCS  from the reciprocal component [ ] [ ]
symrec CC SS   =  via an orientation angle φ′ , and by further 

decomposing the latter into two further components, [ ]max
symCS  and [ ]min

symCS , with linear eigen-polarizations via 

the angle τ , so that 
 

( )[ ] [ ] [ ]{ } [ ]
nrsymsym CCCC SaSSadcbaS            φττφ ′++′= sinsincoscos,,, minmax                                            (4.43)   

 
which is further analyzed in [40] and its limitations are clearly identified in [27]. 
 
Of the many other existing [  matrix decomposition theorems, mostly derived from alternate 
formulations (4.39) of the Pauli spin matrix set 

( dcbaS ,,, )]
[ ]( )3,2,1,0       , =iip σψ , defined in (2.14), the three examples 

of the Huynen, the Krogager and the Cameron decompositions, it becomes apparent that there exists an 
infinum of decompositions non of which is unique and all of them are basis dependent and require a priori 
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information on the scatterer scenario under investigation. Yet for specific distinct applications all of them 
may serve a useful purpose which highly superior to any non-polarimetric or partially polarimetric treatment. 
 

 
(a) San Francisco Image   (b) SDH Decomposition 

 
Fig. 4.4 Polarimetric Decompositions: Krogager, 1993. (a) Original San Francisco POLSAR   

 image with RGB color coded by |HH-VV|, |HV| and |HH+VV|, respectively.  
 (b) Sphere (Blue), diplane (Red) and helix (Green) decomposition (SDH) decomposition. 

 
4.6 Kennaugh Matrix Decomposition of Huynen’s Matrix Vector Characteristic Operator 
The ‘Kennaugh target matrix characteristic operator’ can also be derived from the Kennaugh matrix, as was 
shown by Boerner et al. [78, 90, 31, 82]; using the Lagrangian multiplier method.  A more elegant method 
was recently devised by Pottier in order to highlight the importance of Huynen’s findings on the ‘target 
orientation ψ invariance’ for both the Kennaugh and the Lexicographic Covariance matrix representations; 
and most recently by Yang [119 - 121], who shed more light into the properties of the ‘equi-power-loci’ as 
well as ‘equi-correlation-phase-loci’ which deserve careful future attention but will not be further analyzed 
here.  
 
Instead, we return to Huynen [9], who provided further phenomenological insight into the properties of the 
Kennaugh matrix[ , by redefining [  for the symmetric case in terms of the limited set of Pauli spin 
matrices. 

]

]

K ]S

 

( )[ ] [ ] [ ] [ 210,, σσσ cba
bac

cba
cbaS ++=








−

+
=         (4.44) 

 
so that with the formal relation of [  with [ , obtained via a Kroenecker product multiplication as ]K ]S
 
[ ] [ ] [ ] [ ]( )[ ] 1*12 −⊗= − ASSAK T                  (4.45) 
 
insertion of (4.44) into (4.45) yields, using Huynen’s notation 
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where 
 

jGHacBBc
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*
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*
10

2

*
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            (4.47) 

Recognizing that  becomes zero for proper ‘de-H ψ -ing’ of [  as defined in [   of (4.37) by removing 
the 

]S ]H
ψ  rotational dependence, and inserting it into the antenna descriptors, he was able to redefine his 

Kennaugh matrix coefficients such that 

ψψψψ

ψψψψ

ψψ

ψψ

ψψ

ψψ

4cos4sin2cos2sin

4sin4cos2sin2cos

2cos2sin

FEFDGD

FEEDGG

CCCH

+−=+=

+=−=

==

          (4.48) 

 
so that the ‘de-ψ  -ed’  becomes, by removing  the [ ]K ψ -dependence from [  and incorporating it into 
the antenna polarization and Stokes’ vectors, respectively, such that 

]K

 

[ ]
( )

( )
( )

( )

















−=
+

+−
=+

=−

00

10

00

00

0

0

BAEDH
EBAGC
DGBAF

HCFBA

Kde ψ         (4.49) 

 
and expressed in terms of the Huynen parameters  
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−
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     (4.50) 

 
 Huynen’s decomposition was greeted with comprehension, steadily but slowly so are his phenomenological 
argumentations. We note that its uniqueness is not guaranteed, because it is not basis-independent as was 
shown by Pottier [126]. 
 
4.7 Optimization of the Kennaugh matrix [K] for the Coherent Case Using Stokes’ Vector 

Formulism 
Using the Lagrange multiplier method applied to the received power matrices for the mono-static reciprocal 
case in terms of the Kennaugh (Stokes reflection) matrices [ ]cK , [ ]xK , and [ ]mK  of (3.30) and (3.31), 
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respectively, derived in [113], enables one to determine the characteristic polarization states similar to the 
generalized ρ-transformation methods. 

 
For simplicity, the transmitted wave incident on the scatterer is assumed to be a completely polarized and 
normalized wave so that  tq

( ) 12
12

3
2

2
2

1         =++= tttt
o qqqq                      (4.51) 

 
and re-stating the received power expression defined in (3.26), (3.29), and (3.34) as functions of  the optimal 
Stokes parameters, where 
 

[ ] ( ) [ ] ( )
[ ] ( )

1 2 3 1 2 3

1 2 3

  q   q    , , ,     q   q    , , ,   

  q   q    , , 

tT t t t t tT t t t t
c c c x x x

tT t t t t
m m m

P K P q q q P K P q q q

P K P q q q

= = = =

= =
   (4.52) 

 
are subject to the constraint of (4.51).This requirement dictates the use of the method of Lagrangian 
multipliers to find the extrema of the received powers cP , xP , and .  Reformulating mP
the equation of constraint to be given by 
 

( ) ( ) 012
12

3
2

2
2

1321          , , =−++= tttttt qqqqqqφ                                                                                     (4.53)            
 
then the Lagrangian mul ipliers method for finding the extreme values of any of the three returned power 
expressions

t
( )ttt

l qqqP 321 ,  ,   results with  in  , ,l c m x=
 

3,2,10                   ==
∂
∂

−
∂
∂ i

qq
P

t
i

t
i

e φµ
                                                                                              (4.54) 

For the corresponding ‘degenerate deterministic’ (purely coherent) Kennaugh matrix[ , insertion of the 
corresponding

]K
( )ttt

l qqqP 321 ,  ,   into (4.54) results in a set of Galois equations yielding for: 
 
(i)  the extreme ‘co-polar channel power ’cP   four solutions: two maxima 1,2cmρ  which are 
 orthogonal, and two minima (nulls) which may in an extreme pathological case be 
 orthogonal (or identical but generally are not); and not one more or not one less of any  
 of these extrema; 
 
(ii) the returned ‘cross-polar channel power ’ with six extreme solutions, being the xP
 three non-identical pairs of orthogonal polarization states: the cross-polar maxima 
 1,2xmρ , the cross-polar minima 1,2xnρ ,  and the cross-polar saddle optima 1,2xsρ ;  

 and not one more or not one less of any of these extrema; 
 
(iii) the returned power for the ‘matched antenna case ’mP   yields only two solutions 
 being identical to the ‘co-polar maxima pair 1,2 1,2cm xnρ ρ= ’ and not one more or  
 not one less of any of these extrema. 

 
In summary, ( ){ }ttt

c qqqP 321 ,  ,   Opt  yields always exactly four solutions; ( ){ }ttt
x qqqPOpt 321 ,  ,    yields always 

exactly six solutions (or equivalently three “bi-orthogonal” pairs of orthogonal polarization states); 
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and ( ){ }ttt
m qqqPOpt 321 ,  ,   

]G

 yields always two solutions (or equivalently, exactly one pair of orthogonal 
polarization states). This represents an important result which also holds for the partially polarized case 
subject to incidence of a completely polarized wave. 

)(),( ρρ ⊥cR 

 
A comparison of methods for a coherent scatterer of a specifically given Sinclair matrix [ , with 
corresponding [  and [ , plus [ ] , [ , and [ , analyzed in [113], clearly demonstrates that all of 
the methods introduced are equivalent. 

]S
]K cK ] ]xK mK

 
4.8 Determination of the Polarization Density Plots by van Zyl, and the Polarization Phase 

Correlation Plots by Agrawal 
In radar meteorology, and especially in ‘Polarimetric Doppler Radar Meteorology’ the Kennaugh target 
matrix characteristic operator concept was well received and further developed in the thesis of Agrawal [78]; 
and especially analyzed in depth by McCormick [127], and Antar [128] because various hydro-meteoric 
parameters can directly be associated with the Huynen or alternate McCormick parameters. In radar 
meteorology, the Poincaré sphere visualization of the characteristic polarization states has become 
commonplace; whereas in wide area SAR remote sensing the co/cross-polarization and Stokes parameter 
power density plots on the unwrapped planar transformation of the polarization sphere surface, such as 
introduced independently - at the same time - in the dissertations of van Zyl [79] and Agrawal [78], are 
preferred. 
 
Because of the frequent use of the ‘co/cross-polarization power density plots’, )(),( ρρ ⊥cc PP   and )(ρxP ; 
and  the equally important but hitherto rarely implemented ‘co/cross-polarization phase correlation plots  

cR    and )(),( ρρ ⊥xx RR  ’, those are here introduced.  Following Agrawal [78], who first 
established the relation between the ‘Scattering Matrix Characteristic Operators of Kennaugh and Huynen’ 
with the ‘polarimetric power-density/ phase-correlation plots’, we obtain for the reciprocal case  BASABS =  
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re-expressed in terms of the co/cross-polarimetric power density expressions: 
 

             22 ||)(||)( BBcAAc SPSP == ⊥ ρρ               )(||)( 2 ρρ ⊥== xABx PSP                       (4.56) 

 
and the co/cross-polarization phase correlation expressions: 
 

           ∗
⊥

∗ == AABBcBBAAc SSRSSR )()( ρρ                  ∗
⊥

∗ == ABBBxABAAx SSRSSR )()( ρρ   (4.57) 

 
so that   [ )](3 ρLC  may be rewritten according to (3.68) – (3.72) as 
 

( )[ ]
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 
















=
⊥⊥∗

∗⊥∗

ρρρ
ρρρ

ρρρ
ρ

cxc

xxx

cxc

L

PRR
RPR

RRP
C

 
  

 
   

2
222

2

3                                                                   (4.58) 

 
satisfying according to (3.70) and (3.71) the following inter-channel and symmetry relations 
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 −= xxcc RRPP                                  11                                         

                                                                                                                                                  (4.59) 

( ) ( )ρρρρρρ ccxx RRPP                                  =





 −==
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11  

 
and frequently also the degree of polarization  )(ρpD  and the degree of coherency )(ρµ   in terms of the 

directly measurable )(),( ρρ ⊥cc PP   and )(ρxP ;  )(),( ρρ ⊥cR cR  and )(),( ρρ ⊥xx RR  ,               provided a 
‘dual-orthogonal, dual-channel measurement system for coherent and partially coherent scattering ensembles 
is available requiring high-resolution, high channel isolation, high           side-lobe reduction, and high 
sensitivity polarimetric amplitude and phase correlation, where                                                                                                   

( ) ( )
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                                                                                                                                                (4.60) 
and for coherent (deterministic) scatterers 1pDµ = = , whereas for completely depolarized scatterers 

0pDµ = = . 
 
The respective power-density profiles and phase-correlation plots are then obtained from the normalized 

polarimetric radar brightness functions as functions of ( ),φ τ  with 
44

,
22

πτππφπ
≤≤

−
≤≤

−       so that 

 
),()]()[,(),( τφτφτφ pp HVSV T

AA =    
),()]()[,(),( τφτφτφ pp† HVSVAB ⊥=                                                                                        (4.61) 
),()]()[,(),( τφτφτφ ⊥= pp HVSV T

BA  
),()]()[,(),( τφτφτφ ⊥⊥= pp† HVSVBB  

 
where 

22 |),(||| τφAAAAc SVP ==    
22 |),(||| τφABABx SVP ==  

|),(arg),(arg||| τφτφφφ BBAABBAAc VVR −=−=                                                                          (4.62) 
|),(arg),(arg|||),( τφτφφφτφ ABAAABAAx VVR −=−=   
|),(arg),(arg|||),( τφτφφφτφ BABBBABBx VVR −=−=⊥  

 
In addition, the Maximum Stokes Vector  q  , and the maximum received power density       may be 
obtained from   

MAX0 mP

 
),(][),(),( 0 τφτφτφ qq KPm ==                                                                                                 (4.63) 

 
where examples are provided in Figs. 4.5 and 4.6 for one specific matrix case [31, 82] given by 
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    (a) The Kennaugh spinorial (Huynen)   (b) Associated optimal polarization states 
          polarization fork 

    
(c) Power density Co-pol    (d) Power density x-pol 
 

         
(e) Phase correlation co-pol    (f) Phase Correlation x-pol. 

 
Fig. 4.5 Power Density and Phase Correlation Plots for eq. 4.64 (by courtesy of James Morris) 

 
4.9 Optimal Polarization States and its Correspondence to the Density Plots for the Partially 

Polarized Cases 
According to the wave dichotomy portrayed for partially polarized waves, there exists one case for which the 
coherency matrix for the partially polarized case may be separated into one fully polarized and one 
completely depolarized component vector according to Chandrasekhar [34]. This principle will here be 
loosely applied to the case for which a completely polarized wave is incident on either a temporally 
incoherent (e.g., hydro-meteoric scatter) or spatially incoherent (e.g., rough surface viewed from different 
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depression angles as in synthetic aperture radar imaging). This allows us to obtain a first order approximation 
for dealing with partially coherent and/or partially polarized waves when the polarimetric entropy is low; for 
which we then obtain the following optimization criteria: 

 
Fig. 4.6 Power Density and Phase Correlation Plots for eq. 4.64 (by courtesy of James Morris) 

 
The energy density arriving at the receiver back-scattered from a distant scatterer ensemble subject to a 
completely polarized incident wave may be separated into four distinct categories where the Stokes vector is 
here redefined with and denoting the completely polarized and the unpolarized components, 
respectively  

pq uq
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and q as well as were earlier defined, so that the following four categories for optimization of partially 
polarized waves can be defined as   

pD

 
0q                        total energy density in the scattered wave before it reaches the receiver   

 
pDq0                    completely polarized part of the intensity 
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)1(0 pDq −           noise of the unpolarized part    
                                                                                                                                               (4.66) 

)1(
2
1

0 pDq +        maximum of the total receptable intensity, the sum of the matched polarized 

part and one half of the unpolarized part: { } ( ) ( )
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2
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Considering a time-dependent scatterer which is illuminated by a monochromatic (completely polarized 
wave) , for which the reflected wave E is, in general, non-monochromatic; and therefore, partially 
polarized.  Consequently, the Stokes vector and Kennaugh matrix formulism will be applied to the four types 
of energy density terms defined above in (4.66). 

tE s

 
4.10 Optimization of the Adjustable Intensity 0qDp  

The energy density , contained in the completely polarized part of q, is called the adjustable 
intensity because one may adjust the polarization state of the receiver to ensure the polarization match as 
shown previously for the coherent case.  We may rewrite the scattering process in index notation as  
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The adjustable intensity  can be re-expressed as  0qDp
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where the  are the elements of the Stokes  vector of the transmitted wave. The partial derivative of  

 with respect to q  can be derived as  
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For optimizing the adjustable intensity, we apply the method of Lagrangian multipliers, which yields  
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where φ  is the constraint equation  
 

  ( ) ( )            01,,,, 2
12

3
2

2
2

1321 =−= tttttt qqqqqqφ                                                                                       (4.71) 
 
Equation (4.70) subject to (4.71) constitutes a set of inhomogeneous linear equations in     

with solutions as three functions of( ) ( ) ( )        ,, 321 µµµ ttt qandqq µ .  Substituting  into the 
constrained condition (4.71) leads to a sixth-order polynomial Galois equation of

( )    3,2,1; =iqt
i µ
µ .  For each µ value, 
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s
p

ttt qDandqqq 0321 ,,,          are calculated according to (4.67) to (4.69).  The largest (or smallest) intensity is the 

optimal intensity; the corresponding  is the optimal polarization state of the transmitted wave. tq

( ) −t
j    

=  

 
4.11 Minimizing the Noise-Like Energy Density Term: )1(

0 p
s Dq −  

An unpolarized wave can always be represented by an incoherent sum of any two orthogonal completely 
polarized waves of equal intensity [14, 15],which leads to 50% efficiency for the reception of the unpolarized 
wave. In order to receive as much ‘polarized energy’ as possible, the noise-like energy needs to be 
minimized. The total energy density of the unpolarized part of the scattered wave is given by:  
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Hitherto, no simple method was found for finding the analytic closed form solution for the minimum; 
instead, numerical solutions have been developed and are in use. 
 

4.12 Maximizing the Receivable Intensity in the Scattered Wave: )1(
2
1

0 pDq  +  

The total receivable energy density consists of two component parts: 100% reception efficiency for the 
completely polarized part of the scattered wave and 50% reception efficiency for the unpolarized part. The 
resulting expression for the total receivable intensity:  
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can only be solved using numerical analysis and computation. The resulting maximally received Stokes 
vector is plotted in Fig. 4.7 (where q was replaced by p); and we observe that for the fully polarized case no 
‘depolarization pedestal’ exists.  It appears as soon as 1p < , and for 0p =  it reaches its maximum of 0.5 for 
which the polarization diversity profile has deteriorated into the ‘flat equal power density profile’, stating 
that the ‘polarization diversity’ becomes meaningless. 

 
Fig. 4.7 Optimal Polarization States for the Partially Polarized Case 
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In conclusion, we refer to Boerner et al. [31, 82], where an optimization procedure for (4.65 – 4.68) in terms 
of [  for a completely polarized incident wave is presented together with numerical examples.  It should be 
noticed here that Yang more recently provided another more elegant method in [119 - 121] for analyzing the 
statistical optimization procedure of the Kennaugh matrix. 
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6. Appendices 
 
A. The Standard Kronecker Tensorial Matrix Product 
 
Consider a matrix [ ] ijA a =    of order (mxn) and a matrix [ ] ijB b =    of order (rxs). The Kronecker product 

of the two matrices, denoted [ ][ ]A B⊗  is defined as the partitioned matrix 
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[ ][ ]A B⊗  is of order (mrxns). It has mn blocks; the  block is the matrix of order ( , )i j th [ ]ija B

(rxs). 
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B. The Mueller Matrix and The Kennaugh Matrix 
 
The Mueller Matrix 
For the purely coherent case, the Mueller matrix[ ]M  can formally be related to the coherent Jones scattering 
matrix [  as  ]T
 

[ ] 111 ])[][]]([[])[][]([][1111][ −∗−∗− ⊗=⊗−= ATTAATTAM T      (B.1)                                 
 

with the 4x4  expansion matrix [ ]A   given by: 
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so that the elements  of [ijM ]M  are: 
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If [  is normal, i.e. [ ] , then []T * *[ ] [ ] [ ]T TT T T T= M  is also normal, i.e.  [    ][][]][ MMMM TT =

 
The Kennaugh Matrix 
Similarly, for the purely coherent case, [  can formally be related to the coherent Sinclair matrix [  with ]K ]S

∗− = ][
2
1][ 1 AA T  as 
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If [   is symmetric,  ,  then [   is symmetric, ]S xy yxS S= ]K jiij KK =  , so that for the symmetric case 
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